

4M

Max. Marks: 60

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech I Year II Semester (R16) Regular Examinations May/June 2017

ELECTRICAL CIRCUITS

(ELECTRICAL & ELECTRONICS ENGINEERING)

(For Students admitted in 2016 only)

Time: 3 hours

(Answer all Five Units **5 X 12 = 60** Marks)

UNIT-I

1	а	(i)Define resistance and conductance	2M
		(ii)State ohm's law ? also write it's limitations	2M
		(iii)Define Power and energy	2M
	b	(i)Define inductance and capacitance	2M
		(ii) State Kirchhoff's Voltage law	2M
		(iii) State Kirchhoff's Current law	2M
		OR	

- 2 a Explain super node analysis and super mesh analysis
 b Find the equivalent resistance across the terminals A and B of the network shown in fig (1)
 - b Find the equivalent resistance across the terminals A and B of the network shown in fig (1) using Star-delta transformation. 8M

3	a	Determine the average value, RMS value, Form factor and peak factor of a pure sinusoidal wave forms	6M
	b	An AC Circuit consists of a pure resistance of 20Ω and it is connected across an AC supply of 230V, 50HZ. Find (a) Current (b) Power Consumed (c) Sinusoidal equations	
		for Voltage and Current.	6M
		OR	
4.		A 50 Ω resistor is connected in series with a 25 μ F Capacitor across a 230V, 50HZ AC Supply.	
		Find (a) Capacitive reactance (b) Impedance (c) Current (d) Phase angle (e) Voltage drop	
		across resistance (f) Voltage drop across Capacitance (g) Power Factor	12M
		UNIT-III	
5	a	In a parallel resonance circuit (Tank circuit) $R=2\Omega$, L=1mH and C=10µF, Find the	
		Resonant frequency, Dynamic impedance and Bandwidth.	6M
	b	Obtain the expression for resonant frequency for parallel RL-RC circuit	6M
		ÔR	
6	a	Derive the expression for centre and radios of series RL circuit.	6M
	b	Draw the Locus diagram of a Series RL Circuit?	6M

R16	R1	6
------------	-----------	---

6M

6M

UNIT-IV

7	а	Explain Dot convention	4M
	b	Two coupled coils with $L_1=0.02H$, $L_2=0.01H$ and $K=0.5$ are connected in four different	
		ways Series aiding, series opposing, parallel aiding and parallel opposing. Determine the	
		equivalent Inductance in all four cases	8M
		OR	
8	а	Explain in detail about Statically Induced emf and Dynamically Induced emf?	6M
	b	Explain Self Inductance, Mutual Inductance and Co-efficient of coupling in detail? Give the	
		relation between L1, L2, K & M?	6M

UNIT-V

- 9 a State and explain tellegan's theorm?
 - b Determine the voltage across $(2+j5) \Omega$ impedance as shown in figure. (2) by using Super position Theorem?

10 aState and Explain Noton, s theorem6MbDetermine the Thevenin's equivalent circuit for the circuit shown in figure. (3).6M

*** END ***